J. AIRCRAFT, VOL. 37,NO. 5:

Novel Beetle Algorithm for Cartesian
Grid Generation in Two Dimensions

Ashok Srivastava* and K. S. Ravichandran
National Aerospace Laboratories,
Bangalore 560 017, India

Introduction

ARTESIAN grid methods find applications in flow compu-
tations around complex geometry. The task is accomplished
in two major steps, namely, grid generation by employing a suit-
able algorithm and flow computationsusing an appropriate scheme.
This Note gives a description of an innovative Beetle algorithm,
developed by the authors, which generates a Cartesian grid around
arbitrary shapes in two dimensions. Different approacheshave been
used by researchersin devising methods for Cartesian grid genera-
tion around complex shapes, and the reader may refer to Refs. 1-3
for details about Cartesian mesh-generation methods.
ArobustCartesian grid generatorhas been developedfor arbitrary
geometry in two dimensions, with built-in features of automationin
grid generation. The rectangularcells, which are located at the fluid-
boundary interface in the form of Cut_Cells, are collated separately
from the external UnCut_Cells in the Cartesian mesh. The interior
cells within the boundary, where the flow does not exist, are sepa-
rately assembled by a sorting algorithm. A specified arbitrary curve
is immersed in a Cartesian mesh with parametric specifications of
grid spacing in the two orthogonal directions (x, y). A capturing
technique has been used to pick up intersections of the specified
geometry curve and the Cartesian cell walls. Figuratively, an intel-
ligent Beetle moves along the prescribed geometry curve, which
senses an approachingcell wall by a user-defined capture distance.
After capture the Beetle slows its movement (finer step size) until
the error between its location and the cell wall reaches a predefined
minimum. The Beetle traversesthe entire curve representationof the
given configuration in step sizes specified by the user. Therefore, it
is impossible to miss any intersection point in the Cartesian mesh
within the specified resolution. This also ensures availability of the
curved path traced by the Beetle within a cell. Multiple intersections
within the same cell are also captured. The specified geometry curve
can also intersect itself several times. The Beetle algorithm offers
a versatile Cartesian grid generation around arbitrary shapes in two
dimensions.

Grid Definitions and Data Integrity

The configuration input geometry is defined as a string of tabu-
lated coordinates (x, y) of the specified boundary curve. The basic
Cartesian mesh, in which the specified geometry is immersed, is
defined by the number of cells in the x and y directions (nx, ny).
A rectangular box enclosing the geometry is computed. The com-
putational flow domain is then defined by extending the Cartesian
mesh to specified distances from the edges of this bounded rectan-
gle, which is further discretized into rectangular cells. These cells
are generated by I lines and J lines, which run parallel to the (x, y)
axes of the reference system.

The Cartesian mesh is categorized into three distinct domains
comprising the virgin Un-Cut_Cells, the boundary-intercepted
Cut_Cells, and the untouched Internal_Cells. The grid-generation
code collects the intercepted cells separately, and, therefore, the
flow domain can be considered, either, in the external region from

Received 14 September 1999; revision received 18 April 2000; accepted
for publication 28 April 2000. Copyright © 2000 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved.

*Scientist, Computational and Theoretical Fluid Dynamics Division.

f Assistant Director, Computational and Theoretical Fluid Dynamics
Division.

ENGINEERING NOTES 927

the boundary, or alternatively,in the interior of the specified geom-
etry for internal flow computations.

Data integrity can be ensured at two levels. The user specification
of the data is presumed to ensure an accurate representation of the
configuration and is the first level of data integrity. At the second
level the data are modified appropriatelyby interpolationtechniques
to generate additional pointsin the computationaldomain. A higher-
order interpolationcould be used to generate such additional points
to a desired accuracy. The end point of the specified geometry coin-
cides with its starting point. This factis used as a stopping condition
for the Beetle in its onward march along the boundary.

Advancing Beetle

A Beetle (represented by a moving point) commences its jour-
ney from the starting position of the specified geometry in its world
of the Cartesian mesh. A subroutine (BUGP) gets the initial posi-
tion of the Beetle and checks if it is already located on an edge
of a Cartesian cell. As the Beetle moves, the coinciding of its lo-
cation with the Cartesian cell walls is collected as a string of in-
tercepted points. From the initial location, or from an intercepted
point, the probable directions in which the Beetle can move are
evaluated by a subroutine (BUGD), which identifies the indices
of the Cartesian cell edges (N, S, E, W) toward which it can ad-
vance. The Beetle can be located 1) on a corner of a cell, 2) on
an I line, 3) on a J line, or 4) at a point in the interior of a cell.
As the Beetle moves, it can intercept another corner, an I line, or
a J line. The required conditions for such intersections are outlined
next:

1) The Beetle moves from an intersected point 1(K) to the next
intersected point 2(K + 1).

2) Checks made on point 1(K).

3) If the Beetle is located on an I line, EDGEI(K) =1, and
EDGEJ(K) =0.

4) If the Beetle is located on a J line, EDGEI(K) =0, and
EDGEJ(K) =1.

5) If the Beetle is located on a corner, EDGEI(K) =1, and
EDGEJ(K) =1.

The following conditions are applicable, depending on how the
Beetle traverses in the Cartesian mesh to a second point 2(K + 1):

1) The Beetle moves from a corner point (point 1) to its next inter-
ception point (point 2) (Fig. 1a). Twenty cases have been identified
for possible Beetle movements in this subcategory. A detailed de-
scriptionis availablein Ref. 4. For example, when the Beetle moves
from a corner point (point 1) and intercepts the west wall (case 1),
the required conditions are the following: IB(K) =IB(K + 1) — 1;
JB(K) =JB(K + 1); EDGEI(K)=EDGEI(K+1); and EDGEJ(K)=
EDGEJ(K+ 1)—1.

2) The Beetle moves from an I line (point 1) to its next
interception point (point 2) (Fig. 1b). Twelve cases have been
identified for possible Beetle movements in this subcategory. For
example, when the Beetle moves from an I line (point 1) and
interceptsthe north wall (case 4), the required conditions are the fol-
lowing: IB(K) =IB(K + 1); JB(K)=JB(K + 1) — 1; EDGEI(K) =
EDGEI(K + 1) — 1; and EDGEJ(K + 1) =0.

3) The Beetle moves from a J line (point 1) to its next interception
point (point 2). This category is similar to category (B) with the
indices (I, J) interchanged, and similar conditions can be envisaged.

A resolution factor (RSLN) is defined as a fraction of the length/
breadthof the Uncut-Cell (say, RSLN =0.01), and the subsequently
discussed Beetle movement parameters are defined in terms of
RSLN. The Beetle starts moving on the specified curve in mod-
erate steps (step-size DSRUF), keeping track of its distance from all
of the four sides of the cell surrounding it (N, S, E, W). These dis-
tances (CHKN, CHKS, CHKE, CHKW ) are continuouslycompared
with a parametric capture distance (ERRC). If the next interception
is on an I line or on a J line, one of these checked distances falls
below the capture value. If the Beetle is approachinga corner point,
then two of these checked distances fall below the capture distance.
The step size of the Beetle’s onward march is considerably reduced
after capture (DSFIN). The intersectionis obtained when the error
is less than the specified error (ERR). Subsequently, the conditions



928 J. AIRCRAFT, VOL. 37,NO. 5:

(IB-1, JB+1) (IB,JB+1) {IB+1, JB+1)
a 13 Natth 3 1" 2
14
12
10
(B-1,JB) 5 15 g 1(IB+1, JB)
/ (8. J8) \
West l East
16 118 20
6 17 Souh7 19 8
{B-1, JB-1) (B, JB-1) (IB+1,0B-1)
a) Beetle starts from a corner of a cell (IB, JB)
(IB.JB+1) (IB+1, JB+1)
5 Noh 4 3

(1B, JB) 7 1(IB+1, JB)
Wesl \ East
s 12

9 10 Souh 11
(1B, JB-1) (IB+1,JB-1)

b) Beetle starts from an I-line of a cell (IB, JB)
Fig. 1 Beetle traverse on a Cartesian cell.

outlined in the 1), 2), and 3) determine the location of the Beetle
after interception. The Beetle is advanced a little ahead of the inter-
section point so that the interception is fully computed, and, then,
it is positioned back to the interception point for its further move-
ment. This ensures thata corner pointis picked up as an intersection,
which otherwise could be mistaken to be simply an I line or a J line
intersection.

The Beetle may GRAZE along the Cartesian mesh walls depend-
ing on how the boundary of the configuration geometry is specified.
A GRAZING test is conducted after each interception and is ac-
counted for in the movement of the Beetle. After grazing a cell
wall, the Beetle can move to a corner point of the same cell, or it can
leave the cell wall after partial grazing. It can also graze several cell
walls. It can also suddenly commence grazing a J line after grazing
an I line. All such possibilities have been appropriately identified
and implemented in the code.

Assembly of Cut-Cell Vertices

After the intersection points have been collated, a subroutine
(CELLP) is used to construct the Cut_Cells from the rectangu-
lar cells. These Cut_Cells are derived by the inclusion of the in-
tercepted points as the cell vertices. As the Beetle moves ahead
in “strides” along the intercepted points, it divides a rectangular
Cartesian cell into a left Cut_Cell and a right Cut_Cell, with refer-
ence to its advancing direction (anticlockwise). The Cut_Cell con-
structionis then performed by adjusting the cell corners that are ap-
propriately modified by inclusion of the intersection points, which
are added as vertices. The details of Cut_Cell constructionare given
in Ref. 4.

A check is continuously made for the traversing Beetle making
multiple intersections within a cell, indicating its confinement in a
particular cell. Any three consecutive intersection points (P1, P2,
P3) are tested for their location in the same cell. The two line seg-
ments P1-P2 and P2-P3 must satisfy certain conditions to be in the
same cell. Details are available in Ref. 4. Usually, such multiple
intersectionscan be avoided by refining the basic Cartesian mesh or
by introducing adaptive mesh refinement locally.

ENGINEERING NOTES

Fig. 2 Cartesian grid for interior and exterior domains.

Separating Inside/Outside Regions

The two domains of interest in flow computations are the ex-
ternal and the internal grid within, or outside of, the prescribed
geometry. The separation of inside/outside regions is carried out by
a subroutine (MAP_IO). The user specifies a point located inside
the boundary curve as data input. All of the cells in the Cartesian
mesh are initially switched on with a property NBUGC =1. The
algorithm then proceeds to check the neighboring cells recursively,
which are switched off by redefining the property NBUGC =0, un-
til a boundary cell (Cut_Cell) is encountered, which has a property
NBUGC =2. This procedure separates the inside region from the
outside, systematically.

A Cartesian grid visualizing postprocessor’ developed in
C++ is then used for graphical viewing of the generated Cartesian
grid.

Beetle Tracking Parameters

The parameters employed in the Beetle algorithm are sensitive
to how mathematical zero is defined in the machine and the resolu-
tion RSLN, discussed earlier. The machine zero can be defined as
ZERO = 1.0E-06 as parametricdatainput within the grid-generation
code. The parameter RSLN is a fraction of an Un-Cut cell side
length. The other parameters are defined as per the accuracy de-
mand of the user for the generation of the Cut_Cells. A typical set
of these parameters is given next:

ZERO = 1.0E-06;
DSRUF = RSLN;
ERRC = 2.0 X DSRUF;

RSLN =0.01
DSFIN = 0.1 XRSLN
ERR = 1.0 X DSFIN

Sample Cases

The following sample cases demonstrate the application of the
grid-generationcode based on the Beetle algorithm (Fig. 2): 1) cir-
cle, 2) airfoil, and 3) aircraft.

The Cartesian visualizing code’ has been used to create the
graphic images. The versatility of the grid generation for arbitrary
shapes is clearly evident in the samples (1-3). Figure 2 also depicts
internal cells within the aircraft (computationsfor air conditioning).

Conclusions
A Cartesiangrid generatorhas beencoded to obtain Cartesian grid
around arbitrary geometry in two dimensions. The grid generation
is accomplished by a novel techniqueemploying a Beetle algorithm.



J. AIRCRAFT, VOL. 37,NO. 5:

The significant parameters in defining the movement of the Beetle
and its capture of intersection points have been ascertained and
implemented within the code. The sample grid generated around
several shapes shows the versatility of the code. It is intended to
extendthis methodologyto shapesin threedimensionsby converting
the movement of the Beetle to that of a “paint brush” (defined by
an elemental arc), which traverses an arbitrary surface (paints the
surface), and thereby collating the intersecting boundaries of the
hexahedral cells. A flow solver based on Colella et al.! is being
developed to generate flow solutions.

References

I'Pember, R. B., Bell, J. B., Coelella, P., Crutchfield, W. Y., and Welcome,
M. L., “An Adaptive Cartesian Grid Method for Unsteady Compressible
Flow in Irregular Regions,” Journal of Computational Physics, Vol. 120,
No. 2, 1995, pp. 278-304.

2Quirk, J. James, “A Cartesian Grid Approach with Hierarchical
Refinement for Compressible Flows,” Inst. for Computer Applications
in Science and Engineering Rept. 94-51, NASA CR 194938, June
1994.

3Zeeuw, Darren De, and Powell, Kenneth G., “An Adaptively Refined
Cartesian Mesh Solver for the Euler Equations,” Journal of Computational
Physics, Vol. 104, No. 1, 1993, pp. 56-68.

4Srivastava, A., and Ravichandran, K. S., “Cartesian-Grid Generation in
Two Dimensions,” National Aerospace Lab., NAL-PD-CF 9903, Bangalore,
India, Feb. 1999.

SSrivastava, A., and Ravichandran, K. S., “Cartesian-Grid-Visualization
Code (C++),” National Aerospace Lab., NAL-PD-CF 9906, Bangalore,
India, July 1999.

Comparison of Deterministic and
Stochastic Optimization Algorithms
for Generic Wing Design Problems

X. Wang* and M. Damodaran®
Center for Advanced Numerical Engineering Simulations,
Nanyang Technological University, Singapore 639798

Introduction

N the past decade, a variety of numerical optimization algo-

rithms have been extensively used to address multidisciplinary
design optimization (MDO) problems that deal with design pro-
cesses that are dependent on interactions among several engineer-
ing disciplines. MDO consists of many challenging features, such
as a heterogeneous mix of analysis codes for evaluating objective
functions, a large number of design variables, discrete design pa-
rameter values, and complex constraints. Local optimization strate-
gies, such as gradient-based algorithms, have been widely applied
to engineering system designs.""> Although the number of design
iterations required by local optimizers can be small, a major short-
coming of local optimizers is that they may get trapped in local
optima. Although the performance of local optimizers can be en-
hanced by sensitivity analysis, such as that given in Ref. 2, which
reduces the number of objective function evaluations in the opti-
mization process, it is often accomplished at the expense of addi-
tional work in constructing models for estimating sensitivities. In
some cases the use of approximate derivatives in estimating sensi-
tivities (see Ref. 1) can lead to a loss of accuracy in the optimization
process.

Received 10 November 1999; revision received 5 January 2000; accepted
for publication 20 March 2000. Copyright © 2000 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved.

*Research Fellow. Member AIAA.

T Associate Professor, School of Mechanical and Production Engineering;
mdamodaran @ntu.edu.sg. Senior Member AIAA.

ENGINEERING NOTES 929

Besides deterministic methods for optimization, global optimiza-
tion methods that are robust in avoiding local optima have found
applications recently in practical designs. The simulated anneal-
ing (SA) method and the genetic algorithm (GA) have recently
shown promise in addressing MDO engineering problems. Both
SA algorithms and GAs are stochastic in nature and are easily im-
plemented in robust computer codes compared with determinis-
tic methods. However, the SA method and the GA require a large
number of function evaluations and longer computation time, espe-
cially in complex design problems that couple interactions between
multiple disciplines, such as fluids and structures, and that have
a large number of design variables. Hence, to shorten the compu-
tation time, it is imperative that SA and the GA be implemented
by high-performance computing technologies such as parallel
computing.

Our aim is to compare the performance of deterministic and
stochastic optimization methods by applying these to generic air-
craft wing design problems to guide the use of these methods for
MDO problems. The design problem considered for this study con-
cerns the design of the optimal wing shape for minimizing drag with
weight of the wing as a constraint so that the interaction between
aerodynamics and structural weight influences the determinationof
the best wing shape. The optimization algorithmsused for this prob-
lem are the SA method, the GA, the gradient-based method (GM),
the Powell search method, the parallel SA (PSA) method, and the
parallel GA (PGA). These methods are outlined briefly in the fol-
lowing section, and their performances in design optimization of
the selected problem are compared.

Optimization Algorithms

The optimization algorithms used in this study are classified into
stochastic (global search) methods (SA, GA, etc.) and determin-
istic (local search) methods (GM, Powell method, etc.). SA is a
search of the design space with the goal of finding a global min-
ima, as in Ref. 3. In SA, the optimization problem is simulated as
an annealing process, and SA possesses a formal proof of con-
vergence to global optima, although this proof relies on a very
slow cooling schedule and sufficiently large initial temperature.
The GA is a computerized search, and optimization algorithms
are based on the mechanics of natural genetics and natural selec-
tion, as Ref. 4. The basic mechanism of GAs is provided by re-
production and crossover processes. Hence the GA can be applied
for optimizing objective functions in design spaces that are mul-
timodal or discontinuous. The GA searches from a population of
points, and the survival-of-the-fitest strategy increases the proba-
bility of finding the global optimum in multimodal or convex search
spaces.

The GMs have the advantage of fast convergencein locating local
minima, for which reasonably accurate derivatives can be estimated
in a cost-effectivemanner. However, the tendency for the GM’s get-
ting trapped in local minima is high. GMs are suitable for searching
convex design spaces with continuous derivatives. In this work, the
Broydon-Fletcher-Goldfarb-Shanno (BFGS) method outlined in
Ref. 5 is used for the optimization process. If the objective function
does not possess continuousderivatives,a direct search method such
as Powell’s method, as outlined in Ref. 6, might be more suitable
for design optimization. Powell’s method uses a history of previous
solutions to create new search directions and only function values
at different points are needed.

Itisimperativethat methodsto reduce computationaltime be used
for implementing global optimizationalgorithms. A number of pos-
sibilities exist for this. One way is to incorporate modifications to
basic SA and the GA; for example, in SA, a wise choice of the cool-
ing scheme and the length of Markov’s chains can resultin moderate
computational savings. The advent of parallel-processingarchitec-
ture and efficient message-passing libraries offer the possibility of
parallelizing SA and the GA. A parallel SA algorithm proposed
by Diekmann et al.” was developed with the MPI library described
in Ref. 8 with the MPT tool and applied to the same problem. The
distributedparallel GA method shows that migration introducedbe-
tween multiple processors and set in a loop is an efficient way for



